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Abstract. We show that the pentagonal equation, relating R-matrices and vector coupling
coefficients, can be used to calculate recursively general R-matrices from those containing
the primitive irrep. All R-matrices for su(2), are calculated by this method. As an
illustration of the more general case the primitive veclor coupling coefficients for su(3)q
are obtained and used to derive formulae for the R-malrices with a certain restriction
oh the representations.

1. Introduction

Yang-Baxter equations arise in statistical mechanics (Baxter 1982), conformal field
theory (Alvarez-Gaume ef al 1990a, de Vega 1989, Witten 1990) and in connection
with braid groups (Akutsu and Wadati 1987). The search for solutions, the R-
matrices, to quantum Yang-Baxter equations inspired the development of quantum
groups (Sklyanin 1982, Kulish and Reshetikhin 1981). ‘Quantum groups’ are one-
parameter deformations of universal envcloping algebras of Lie algebras. Solutions
to the Yang-Baxter equation without spectral parameter may be based on vector
coupling coefficients of these g¢-deformed algebras. Representations of the braid
group may then be obtained from R-matrices.

The operator form of universal R-matrices for all quantum groups associated
with finite-dimensional Lie algebras are known (Burroughs 1990, jimbo 1985, 1987,
Rosso 1989). A more explicit form is known (or the fundamental representations of
su(n), and other g-deformed Lie groups (Reshetikhin 1988). The explicit form of
all the R-matrices for su(2), has been calculated (Nomura 1989). Some R-matrices
for representations other than the fundamcntal have been found for su(3), (Ma
1990a,b). These matrices have been obtained by calculating the appropriate vector
coupling coefficients of the quantum group and then summing over products of all
the coefficients for particular irreps. Only three representations were considered in
Ma (1990a,b) because no general form is known for the vector coupling coeflicients
of su(3),.

In this paper we introduce a new recursive method for calculating R-matrices
which requires only a few vector coupling coelflicients 10 be known. The primitive
coupling coefficients for su(2), have been obtained in Licnert and Butler (1992)
while all the coefficients required for the su(3) R-matrix calculation are given in
section 4. The recursive method is illustrated by calculating R-matrices for su(2),
and a class of R-matrices for su(3},.
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2. Properties of R-matrices

The g-deformed algebras are quasi-triangular Hopf algebras (Abe 1980). An element,
R, called the universal R-matrix, can be constructed for such algebras (Drinfeld 1985).
Restrictions of the universal R-matrix to irreps may be defined from R by

RM)‘Q = P/\M:R (1)

where P is the permutation operator on the tensor product of the irrep spaces. These
matrices satisfy the Yang—Baxter equation without the spectral parameter (Reshetikhin
1988, Hou et al 1990), namely

RAQA] RAsAl R1\3A3 - R}\a;\g R);}\l R)QA] . . (2)

The R-matrices effect a ¢ — 1/q transformation in the vector coupling coefficients
(Reshetikhin 1988),

(R;Mg) :: :Z q()‘1m1’\2m2|1”)\m> = qc(,\l)-}-c(xg)—c()\)/z g('\lm&)\zm'zlr)\m) (3)
1

where c()) is the quadratic Casimir operator on A. On using the orthogonality of
the vector coupling coefficients, we have
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The symmetries of the vector coupling coeflicients (Lienert and Butler 1992) imply
the following symmetries for the R-matrices:
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where A} (or )3) is the highest weight of the representation dual to A, (0r A,).
The R-matrices and vector coupling coeflicients satisfy the pentagonal reiation
(Reshetikhin 1988, Nomura 1989, Hou et a/ 1990)

A Ay maom’ Ay A} M2 M ‘ N
. mzm’ (qu )m; m (qu ) mz ! q()‘1’711)\2”’~2|’)‘3ma>
1y 1]

—_ Xa A n m
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™3

This equation is used in sections 3 and 5 as a recursion relation for finding general
R-matrices.
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3. Calculation of su(2), R-matrices

The R-matrices containing the trivial irrep and the primitive irrep are calculated di-
rectly from (4), using the values of the trivial and primitive vector coupling coefficients
(Lienert and Butler 1992),

The trivial R-matrix is 1, and the non-zero primitive R-matrices are easily com-
puted. We have

(th) imo_ (R%h) ~3-m
Im 9 -1 _m

L) )meligt 1 . .
= qleHeln=e Gt (] damljpt § me+3) (5 Jamlipt+imet3)

i g )—c(§p— 4 .
+ gle(@+elia)—clz- 1)} %;sz!.?z‘%m“i‘%) ;}(%%szbz lmql 1)

1

= m {q-hljz +m+1]+ gt [Jo - m]} =q " (8}

while a similar calculation gives
) =1
(RE) 7} ™ = = e m 4 Mt i @
2

where the g-numbers {z] are defined by [z] = (¢° ~ q ~*)/(g—¢~') and for su(2),,
e(j) =i(7 +1).

A recursion relanon for the general case can now be obtained by lettmg A; be the
primitive irrep 2, and m; be ‘2 in the pentagonal equation (7). Substituting for the
primitive R-matrices and vector coupling coeflicients, and changing notation (namely
31 — 3 for X, j; for A, j, for A, etc) gives the recursion relation

(Rjria) "0 T qrmHRliG on)d s g2l gy

n m-—i

. ap . . ey k jl—ljg) n-it+d m
%4 — — — R 2 2
{lir—m+ illip+m — i +1)05 —n+ i1} (RS NP
—n4jy - (/21 . 1 -1 —i-4
+ g e i (R TR R (10)
Iterating this expression 23, times, with the maximum value of n = j,, gives R-
matrices on the right-hand side of the form

(Ro'h) 2f—i=t m
q

0 m-it2,-t

The only such R-matrix which is non-zero is the trivial /2-matrix for which 27, ~i—¢ =
0. Substituting, we have

. . - . 1
(Ririn) =i ™ ={ (25311 = m + AL, + m]! }2q{—(2j1-i}(2m-i)+£}/2 _
q i1 om-i [4)M[27, — ) [d, + ™ — )My — m]!

(11)
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To obtain the R-matnces for n < _11, we rearrangc the recursion relation (10),
and substitute j, for j, + 1 and i for i 4 1, to give

iay B W [+ m—i~1] i
(R m—*‘_{[il—n+i+1][jz—m+i+1]} (=)

% If'n +n+1 L P 1+2]1/2(RJ‘+°”\ nei-j om
llh’ .

1 h J ol m-is
—ljy + n = (g — q)q AR (R a) BT m_m,._l} :
(12)
n-{i m

On iteration m — i + j, times we obtain an expression for ( R} i2) _ in terms
of a sum of R-matrices of the form mome

(Rj1+(m—"+1'2—f)/?iz) nt(m—itja-1)/2 m
1 n—(m+itjat1)/2 —ja

The symmetries of the R-matrix, (5) and (6), and the result (11) allows us to evaluate
the right-hand side. The summation can be performed by using the g-equivalent of
the binomial coefficient sum rule (Andrews 1976). The resulting algebraic expression
may be simplified to give the general R-matrices for su(2), as

(Rg‘ J':) n—-i m — (q—l _ q)iq{—(2m-5)(2n—i)+f}/'-’

n m-—t

1 7, + =)tiy — n + s — m + 44, + m)! 3
ol | ™

s = nlilsy + 7 — 311y + m = 1]l — ]!

which agrees with the result obtained by Nomura (1989), when differences in the
definition of g are taken jnto account.

4. Primitive coupling coefficients for su(3),

The su(3), representations are labelied by their Young tablcaus, A = (h;, h,). They
can be obtamed in a basis u(1),xsu(2), as |Aotr), where o is a u(1), representation
corresponding to hypercharge in su( 3} ¢ is the su{ 9) label of 1sosmn and 7 its z-
component This choice of basis is the same as that of Ma {1990a, b) The primitive
irrepresentation, e, is chosen to be (1,0), its conjugate being (1,1).

From Reshetikhin (1988) the trivial vector-coupling cocllicient is

3o-~-ur /2
q
ol —— (14
|7, ? )

q

LAotTi A*—ot—7|0000} =

where the g-dimension of A is [A|, = [l — b, + 1])[/; + 2][h; + 1]/[2] (Alvarez-
Gaume et al 1990a,b) and ¢ is a phase.

The primitive vector-coupling coeflicients for su(3), are calculated from the or-
thogonality and symmetry properties of the cocllicients following the method of
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Lienert and Butler (1992). Phases are chosen to agree with those in su(3) (Moshinsky
1962). With the su(2), primitive coefficients factored out, we have

Ay hg) o435 4(1,0)-20|(h, + 1,h,) 0 1)
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[ 1 i Darn . 1 . 1 £sL 2
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AChyvhy) o=5143:(1,0) 2 1|(hy, Ay + 1)ot)
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In the ¢ — 1 limit, the su(3) coefficients of Moshinsky (1962) are recovered.

5. Calculation of su(3), R-matrices

As in the su(2), case, the primitive R-matrices are calculated immediately from the
primitive vector coupling coefficients. The non-zero primitive R-matrices are given
below:

hghqlo 0’11’—%00 —_— o
(R‘I )o'tr—§00 =1 (24
L ertr iLL 1.
(R;ll 310) o i:: = g 30T (25)
3 2 2
hyha10y 1T §5 -3 _ —lo4r
(Rphat0) " i =0 (26)
3 2 2
otr—-1 111 _lgdd, 1 1
(Riai0) 7271 B3 = ot (gt = gy - 7 4 @7
(Rhhs 10y o-lt+i7-4 L 13
q atr -i00
1 1 3 -
= qiTtaTV (g ¢7h)

X {Lt -7+ 1][%&1 + ,}ghQ + %o‘ -~ !I[—~§ﬁ1 + ;—“;hz - %a +t4 1]

L
X [2hy = Lh, ~ Yo+ 14+ 2)/[20+2)[2¢ + 1]}2 (28)
hihaloy o-lt=47-4 114
(Rq‘ ) ot -200
logtle_gal, 1 N
=gttty T —q)

% [2h, — Shy — bo -t + 1]/[242¢ + 1]} 29)
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(Rh1ha10) o=lt+3r+d

otT
1 -
_q4a+ r+:(q l_q)

x {[t+ 1+ 1)(5h + Shy+ to—t)[—Lh, + Zhy— Lo+t + 1]

x [3hy = 3hy — Lo + 1 4 2)/[2t + 2)[2¢ + 1]} P (30)
hih o-1t-1 1rpd 111
(R ' 210) otr ’ 2'}0;
= gioHiTHi(gl g
x {[t = 7)§hs — 3Ry + Lo+ [ihy + Lhy+ lo+ 1 4+ 1)
1
X [3hy — hy— Lo —t + 1]/[2¢)[2t + 1]} 2 (31)

The pentagonal equation gives nine recursion relations for the general R-matrices
six of which are summarized below:

(R;\,ﬂ)a-u-!r—j pev fAo+itrie-200jNotr)

otr p—ta—-mv-—) q
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q(A G—%—it—%—l 'r—-—%—j;e

+(R““’) g—f-itddairgdai  paw-t (R“’.’ 111 pap

7 _6—§tr—§ pui g—m p—j q 111 pap—)

_1_. _ 14 ell_1 ; :

X fro—3—it+i-I7+1 €55 5N o—it-lr—73)
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3l 2 g=is=mMm =3 332 Ps¥=l
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where we substitute X’ = (A, + 1, k,) to obtain equations (32a) and (33a), X’ =
{(hy,hy + 1) to obtain (32b) and (33b), and X = (h; — 1,h, — 1) to obtain (32c)
and (33c).

Recursion relation (33a) on iterating h, times gives an expression for

(Rhmglu) =i dhi—4ith—j IR TIN
1 SR LR fa—idgi—five]

as a sum over terms of the form

(Rooylﬂ) ~itb —Litib —jtct+ld g -b tgr—sbv-c~1b
4 a0 Lgimi dgi—divmj

The only such term which is non-zero is the trivial R-matrix for which & = i, and
c=3j— %z This matrix can be substituted for, to obtain the left-hand side.
Equanon (32a) is used to obtain R-matrices with general o in terms of those with
g = 5!11
Rearranging (334), moving the third term on the right to the left-hand side, and
iterating s — v times gives

(Rh1091 0) i th-Lir-j psv
q ik, %hlf p—is—%iu—j

as a sum over R-matrices of the form obtained in the previous step, namely with
r = t. The expression for these can be substituted and one of the sums performed
using the q-equiva]ent of the binomial coeflicient sum rule.

Iterating (320) h ~thy,— Lo —ttimes, (326) —ih, + $h, — Jo + ¢ times and
(32c) }hy + $hy + 3T - ? times. gives

(Rh hgg,o)" it=dir—j lavdag v
agtr sqi~itq—fiv—j

with general o, t and A, in terms of R-matrices with i, = 0, ¢ = 1h, and t = 1h,.
Finally, using crossing symmetry (5) and iterating in a similar manner to the

previous step, we have the R-matrices where the only restrictions are | = m = i

and j > 0, namely )

I
(thhiglh)a Pt=girT—j pav

g sty p=ia=1iv—j
—2op+ Yiot Fip—dij+ i+ bi- it LM

=4q X
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x q—2w-»2sr-§u'+%Vi—it+£r+jr+js+a~u
< (q—l _ q)j+:§i Z q—2tz+21'z+%s’z—jz-z(_)z-a-l-u[j + %1 + z]p
~ [#Js— v =2V [-s+r+i+ 2] i+ 5!
{[21# 2t~ 1t -2 - 4 5]
[2¢)1[2¢ + 1)1t — r]t{t — Li 4+ — ]!
< [1hy — 2R, + Lo + ]!
[3h1 - 3hy + 3o+t~ ]!
(3hi+ 3he + 30+t + 1112k, — by, - o -t 4]t
[3h1 + 3hy+ 3o+t = i+ 1)[Fh, — $hy— o - ]!
< [25 — ]2 — i + 1]![s 4 v][s — )2
[2s)![2s +1)!s = 3i4+ v — j)ls — i — v + 4]
(89— 30, — 3o — s + ]!
(39, — 39, — 30— 8!

X

(391~ 39, + 3o+ )31 + Sou + 3o+ s+ 1]!
3o - 30+ 3p+s—illllg + Lo, + to+s—i+1]!

}%. (34)

6. Conclusions

The pentagonal relation provides recursion equations for calculating R-matrices. Un-
like previous methods which require the complete set of vector coupling coefficients
to calculate R-matrices, in the present method only the primitive coefficients are
required for any R-matrices.

The resulting su(2), calculation involves ounly the straightforward solution of a
recursion relation and thus is more systematic than Nomura (1989).

A complete class of R-matrices has been found by the recursive method for
su(3),. As a first step, the algebraic form of the primitive vector coupling coefficients
were obtained by the method in Lienert and Butler {1992). Our results agree with
those matrix elements and primitive vector coupling coeflicients obtained by Ma
(1990a,b), namely for the cases of (h;, hy) = (g,,9,) = (1,0), (2,0) and (2,1).
Calculation of the complete form of su(3), R-matrices is algebraically involved, but
can be obtained in the same manner as the results given here.
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