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Recursive calculation of the R-matrices of q-deformed 
algebras 
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Physics Depanment. University of Canterbury, Chrilchurch, New Zealand 

Received 14 April 1992 

AbtrPcL We show that the pentagonal equation. relating R-matrices and vector coupling 
coefficients, can be used lo calculate recursively general R-matrices from those containing 
the primitive irrep. All R-matrices for su(2), are calculated by this method. As an 
illustration of the more general case the primitive vector coupling coefficients for s ~ ( 3 ) ~  
are obtained and used to derive formulae for the R-matrices with a cerlain restriction 
on the repreentations 

1. Introduction 

Yang-Baxter equations arise in statistical mechanics (Baxter 1982), conformal field 
theory (Alvarez-Gaume el a1 199Oa, de Vega 1989, Witten 1990) and in connection 
with braid groups (Akutsu and Wadati 1987). The search for solutions, the R- 
matrices, to quantum Yang-Baxter equations inspired the development of quantum 
groups (Sklyanin 1982, Kulish and Reshetikhin 1981). ‘Quantum groups’ are one- 
parameter deformations of universal enveloping algebras of Lie algebras. Solutions 
to the Yang-Baxter equation without spectral parameter may be based on vector 
coupling coefficients of these q-deformed algebras. Representations of the braid 
group may then be obtained from R-matrices. 

The operator form of universal R-matrices for all quantum groups associated 
with finite-dimensional Lie algebras are known (Burroughs 1990, Jimbo 1985, 1987, 
Ross0 1989). A more explicit form is known for the fundamental representations of 
su(n), and other q-deformed Lie groups (Reshetikhin 1988). The explicit form of 
all the R-matrices for su(2), has been calculated (Nomura 1989). Some R-matrices 
for representations other than the fundamcntal have been found for su(3), (Ma 
19!3Oa,b). These matrices have been obtained by calculating the appropriate vector 
coupling coefficients of the quantum group and then summing over products of all 
the coefficients for particular irreps. Only three representations were considered in 
Ma (199Oa, b) because no general form is known for the vector coupling coefficients 

In this paper we introduce a new recursive method for calculating R-matrices 
which requires only a few vector coupling coclficients to be known. The primitive 
coupling coefficients for su(2), have been obtained in Lienert and Butler (1992) 
while all the coefficients required for the su(3), R-matrix calculation are given in 
section 4. The recursive method is illustrated by calculating 12-matrices for su(2), 
and a class of R-matrices for su(3),. 

of su(3),. 

0305.4470,?2/215577+10$07,50 @ 1992 IOP Publislling Lld 5577 



5578 

2. Prupertles of R-matrices 

The q-deformed algebras are quasi-triangular Hopf algebras (Abe 1980). An element, 
'R, called the universal R-matrix, can be constructed for such algebras (Drinfeld 1985). 
Restrictions of the universal R-matrix to irreps may be defined from R by 

C R Lienerl and P H Burler 

(1) R.\lh> = pAll2R 

where P is the permutation operator on the tensor product of the irrep spaces. These 
matrices satisfy the Yang-Baxter equation without the spectral parameter (Reshetikhin 
1988, Hou et a1 1990), namely 

(2) R A s A ~  R A J A ,  R A S A Z  = R A s A z R . \ ~ A I  R A ~ A L  , 

The R-matrices effect a q - 1 / q  transformation in the vector coupling coefficients 
(Reshetikhin 1988). 

where c(A) is the quadratic Casimir operator on A.  On using the orthogonality of 
the vector coupling coefficients, we have 

- - qe(A1)+c(A2) -c (A) /2  , ( r ~ m  1 A, m , A, m 2 )  1 ( ~ ,  m; A,m;l r ~ m )  . (4) 
rAm 

The symmetries of the vector coupling coefficients (Lienert and Butler 1992) imply 
the following symmetries for the R-matrices: 

where A; (or A;) is the highest weight of the representation dual to A, (or A,). 

(Reshetikhin 1988, Nomura 1989, Hou el a/ 1990) 
The R-matrices and vector coupling coelficients satisfy the pentagonal relation 

This equation is used in sections 3 and 5 as a recursion relation for finding genelal 
R-matrices. 
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3. Calculation of S U ( Z ) ~  R-matrices 

The R-matrices containing the trivial irrep and the primitive irrep are calculated di- 
rectly from (4), using thevalues of the trivial and primitive vector coupling coefficients 
(Lienert and Butler 1992). 

The trivial R-matrix is 1, and the non-zero primitive R-matrices are easily com- 
puted. We have 

while a similar calculation gives 

where the q-numbers [z] are defined by [z] 5 (q" - q - = ) / ( q  - 4-l) and for su(2),, 
c ( j )  = i(j i 1). 

A recursion relation for the general case can now be obtained by letting A, be the 
primitive irrep 4, an6 mi be f in the pentagonai equation ( i j .  Substituting for the 
primitive R-matrices and vector coupling coellicients, and changing notation (namely 
j ,  - f for A,, j ,  for A,, j2 for A, etc) gives the recursion relation 

Iterating this expression 23, times, with the maximum value of 11 = jl, gives R- 
matrices on the right-hand side of the form 

( R ; j , )  2 j l - i - t  m 
0 m-i+?j,-l  

The onlysuch R-matrix which is non-zero is the trivial R-matrix for which 2j,-i--t = 
0. Substituting, we have 
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?b obtain the R-matrices for n < j , ,  we rearrangc the recursion relation (lo), 
and substitute j ,  for j, + h and i for i + 1, to give 

(12) 
, n-i  m On iteration m - i + j ,  times we obtain an expression for ( R t  J z )  

of a sum of R-matrices of the form 
in terms 

n m-i  

R~l+(m- i+j , - t ) /2 j2  n+(m- i t j , - i l / ?  m 

( q  ) n - ( m t i + j z t r ) / ?  -j, 

The symmeaies of the R-matrix, (5) and (6) ,  and thc result (11) allows us to evaluate 
the right-hand side. The summation can be performed by using the q-equivalent of 
the binomial coefficient sum rule (Andrews 1976). The resulting algebraic expression 
may be simplied to give the general R-matrices for su(2), as 

(Ri1j2) n-' m = (Q-l - Q)iq{-(2m-i)(2n-i)ti) /2 
n m-i 

n]![j, - n + i]![j2 - 171 + i]![j, + nz]! 1 lL  (13) Y1+ [i]! [ j ,  - n]![j, + 11 - i ] ! [ j ?  + 711 - i]![j, - nl]! 

which agrees with the result obtained by Nomura (19S9), when differences in the 
definition of Q are taken into account. 

4. Primitive coupling coefficients for su(3), 

The su(3), representations are labelled by their Young tableaus, X = ( h , ,  h 2 ) .  They 
can be obtained in a basis u( l )qxsu(2) ,  as I X U ~ T ) ,  where U is a U( l), representation 
corresponding to hypercharge in su(3); 1 is the s ~ ( 2 ) ~  label of isospin and T its z-  
component. This choice of basis is the same as tha t  of Ma (1990&b). The primitive 
hepresentation, E ,  is chosen to be ( l ,O) ,  its conjugate being ( 1 , l ) .  

From Reshetikhin (1988) the trivial vectorcoupling coclficient is 

where the q-dimension of A k /XI, = [li, - h? + I ] [ / L ,  + 2][h?  4- 1]/[2] (Alvarez- 
Gaume et al 19!Wa, b) and 6 is a phase. 

The primitive vector-coupling coellicients for ~ ( 3 ) ~  are calculated from the or- 
thogonality and symmetly properties of the cocllicicnts following the method of 
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Lienert and Butler (1992). Phases are chosen to agree with those in su(3) (Moshinsky 
1962). With the su(2), primitive coefficients factored out, we have 

,((h1,h2)a+% ~ ; ( L O ) - $ O K h 1  + 1, h,) U t )  
= q $ h ~ - ! h > t f o t f  



In the q -+ 1 limit, the su(3) coefficients of Moshinsky (1962) are recovered. 

5. Calculation of sup), R-matrices 

As in the su(2), case, the primitive R-matrices are calculated immediately from the 
primitive vector coupling coefficients. The non-zero primitive R-matrices are given 
below: 
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= ,?o+!.+i(,-1- q)  

x { [ t  - 7IIih1 - ih2 + 40  + tl[ihl t $h2 + $U + t + 11 
(31) 

x [‘h 3 1 -1h 3 2 - 1  2 0 - t  + 11/[2tlI2t t lI}i 

The pentagonal equation gives nine recursion relations for the general R-matrices 
six of which are summarized below: 



The Only such term which is non-zero is the trivial R-matrix for which b = i, and 
c = j - ii. This matrix can be substituted for, to obtain the left-hand side. 

Equation (32a) is used to obtain R-matrices with general U in terms of those with 

Rearranging (3%). moving the third term on the right to the left-hand side, and 

I r  U = en 3 1' 

iterating s - U times gives 

( R ; l ~ g , O )  $ h i - ; i h , - $ r - j  P S Y  

fh,  $ h , r  p - i s - j i u - j  

as a sum over R-matrices of the form obtained in the previous step, namely with 
r = 1. The expression for these can be substituted and one of the sums performed 
using the q-equivalent of the binomial coelficient sum rule. 

Iterating ( 3 k )  $hl  - f h 2  - $U - t times, (32b) - $ h ,  + i h 2  - ;U + t times and 
(32)  j h ,  + f h 2  + i r  - t times gives 

(R;, h Z g l o )  0- i  t - i i  7 - j  is, $ 9 1  1, 
0 1 7  ; g , - i + g t - * i r , - j  

with general U, 1 and h, in terms of R-matrices with h2 = 0, U = i h ,  and t = $hl .  
Finally, using crossing symmetry ( 5 )  and iterating in a similar manner to the 

previous step, we have the R-matrices where the only restrictions are 1 = m = i i  
and j 2 0, namely 

a - i t - i i r - j  p a w  

a t 7  p - i a - i i v - j  
( R ' 1 h a 8 1 9 1 )  

X - - q- $ u p +  :io+ t i p -  + i j t + i + $ j -  t i ' -  .$j '+?rs 
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q - Z t u - 2 s r - + s i t  + v i - i t + i r + j r + j s + s - u  

2t - i +  l ] ! [ t  + r ] ! [ t  - $i  - T + j ] !  
[2 t ] ! [2 t  + 1]![t - r ] ! [ t  - $ i  + T - j ] !  

[ i h ,  - ;h2 + +U + t ] !  
X 

[ i h ,  - i h ,  + +U + t - i ] !  

[$h1 -t ;h, + + t + l ] ! [ i h ,  - $h2  - ;U - t + i ] !  
[ i h ,  + i h ,  + f u  + t - i + l ] ! [ $ h ,  - i h 2  - ;U - t ] !  

X 

[2s - i]![2S - i + l]![S + U ] ! [ .  - U ] !  
X 

[2s]![2s  + l ] ! [ s  - $ i  + v - j]![s - $ i  - v + j ] !  

[ l g  - 2  + 1  
2 P +  S 1 ! [ $ O l  + i02 + f P +  s + l ] !  } +  . (34) 3 1 392 

[' - 2  1 9,  + I P  + s - i ]  ![ $9, + X 
91 + $,I + s - i + 11 ! 

6. Conclusions 

The pentagonal relation provides recursion equations for calculating R-matrices. Un- 
like previous methods which require the complete set of vector coupling coeficients 
to calculate R-matrices, in the present method only the primitive coefficients are 
required for any R-matrices. 

The resulting su(2) ,  calculation involves only the straightfoward solution of a 
recursion relation and thus is more systematic than Nomura (19S9). 

A complete class of R-matrices has been found by the recursive method for 
su(3),. As a first step, the algebraic form of the primitive vector coupling coetiicients 
were obtained by the method in Lienert and Butler (1992). Our results agree with 
those matrix elements and primitive vector coupling coellicients obtained by Ma 
(199Oa,b), namely for the cases of (h,,h,) = ( g l , g ? )  = ( l , O ) ,  ( 1 , O )  and (2 , l ) .  
Calculation of the complete form of su(3), R-matrices is algebraically involved, but 
can be obtained in the same manner as the results given here. 
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